Neutrino Experiment Xenon TPC – the present, and what's **NEXT**...

David Nygren

University of Texas at Arlington

NEXT Collaboration

CIEMAT (Madrid) • U. Girona • IFAE (Barcelona) • IFIC (Valencia) • U. Santiago • U.P. Valencia • U. Zaragoza

LBNL • Texas A&M • UTA • ISU

U. Aveiro • U. Coimbra

CEA (Saclay)

JINR (Dubna)

UAN (Bogota)

Spain provides:

Most of the collaborators

Most secured funding

Host Laboratory - LSC

Key contributions from international groups

Engineering and integration

TPC expertise

high-pressure gas detectors

Xenon supply & enrichment

$\beta\beta$ trends (updated Elliott/Vogel plot by Vogel)

History of the $0\nu\beta\beta$ decay

Perspective

NLDBD has entered a new era:

"Maybe not big/good enough to succeed, but too expensive to fail"

- Failure: background-limited result
- Energy resolution, shielding, radio-purity,...
 not (yet) sufficient to reject all backgrounds
- A discovery class experiment should aim for zero background well into inverted domain

Sensitivity, Background and Exposure

23 May 2013 Credit: Steve Elliott 5

Various Levels of Confidence in a Result

Preponderance of the evidence:

- Correct peak energy with no 2-v contamination
- Single-site energy deposit
- Proper detector distributions (spatial, temporal)
- Rate scales with isotope fraction

Beyond a reasonable doubt:

- Observe the two-electron nature of the event
- Measure kinematic dist. (energy sharing, opening angle)
- Observe the excited state decay
- See the process consistently in several isotopes

Smoking Guns:

- Observe the daughter atom
- A background-free positive result with enriched isotope AND:
- See no peak with depleted isotope no other changes to detector

Why Xenon Gas?

Excellent intrinsic energy resolution:

 $\delta E/E < 3~x10^{-3}$ FWHM at $^{136}Xe~Q_{\beta\beta}$ (2457 KeV) This will be hard to approach in real-life, but maybe 5 x10⁻³ FWHM

Topology available for background rejection

Single electrons (γ-rays) create one endpoint blob Double-beta decay events create two endpoint blobs

Gas phase allows molecular admixtures

Reduced diffusion for better tracking, event integrity, MS measurement, possible wavelength-shifting, Penning effect, ...

New idea for daughter identification...

Barium tagging at high pressure...! ??

NEXT: A light TPC

EL mode is essential to get lineal gain, therefore avoiding avalanche fluctuations and fully exploiting the excellent Fano factor in gas

- It is a High Pressure Xenon (HPXe) TPC operating in EL mode.
- ●It is filled with 100 kg of Xenon enriched at 90% in Xe-136 (in stock) at a pressure of 15 bar.
- •The event energy is integrated by a plane of radiopure PMTs located behind a transparent cathode (energy plane), which also provide t0.
- The event topology is reconstructed by a plane of radiopure silicon pixels (MPPCs) (tracking plane).

NEXT 100 kg detector at LSC: main features

NEXT at LSC

Infrastructures: platform, lead castle, gas system, emergency recovery system, completed. First phase of experiment starts in 2015. In stock, 100 kg of enriched xenon and 100 kg of depleted xenon.

NEXT Platform and Pb Castle at LSC

65 t of Pb sheets from OPERA disassembled bricks received as a loan (for all the duration of NEXT) by INFN

Pb bricks (mainly of standard form) produced by Tecnibusa (5% loss)

Three deliveries

- •7 July
- •11 August
- •29 September

Cleaning and assembly made by NEXT

NEXT Expected Performance Systematic assay of ALL detector components at the LSC HPGe facility

Development of full MonteCarlo simulations

Selection criterion	ββ0ν	ββ2ν	²⁰⁸ T1	²¹⁴ Bi
Fiducial, single track $E \in [2.4, 2.5]$ MeV	0.4759	8.06×10^{-9}	2.83×10^{-5}	1.04×10^{-5}
Track with 2 blobs	0.6851	0.6851	0.1141	0.105
Energy ROI	0.8661	3.89×10^{-5}	0.150	0.457
Total	0.2824	2.15×10^{-13}	4.9×10^{-7}	4.9×10^{-7}

Detector subsystem	²⁰⁸ T1	$^{214}\mathrm{Bi}$	Total
Pressure vessel	< 0.23	< 0.06	< 0.29
Energy plane	< 0.57	< 2.10	< 2.67
Tracking plane	< 0.40	< 0.50	< 0.90
Electric-field cage	< 0.15	< 0.81	< 0.96
Inner shielding	< 0.05	< 0.7	< 0.75
Outer shielding	0.027(13)	0.25(14)	0.28(14)
Total	< 1.43	< 4.42	$< 5.85 \ 10^{-4} / (\text{keV kg})$

EL Prototypes

NEXT-DBDM LBNL-Berkeley

NEXT-DEMO IFIC-Valencia

NEXT-DBDM. Energy resolution

NEXT-DBDM obtains an extraordinary energy resolution: 1.04% at Cs-137 peak (about 0.53% @ Qbb)

No tracking yet. Impose hard fiducial cut which in practice selects only events in the center of the chamber.

A typical 137 Cs γ waveform (sum of 19 PMTs) $^{\sim}300,000$ detected photoelectrons

The x-ray peaks at ~30 keV are captured precisely

Topological signature - simulation

DATA: Real track from ¹³⁷Cs γ-ray – reconstructed with SiPMs

23 May 2013 WINP 2015 20

NEW (NEXT-WHITE) at glance

NEW being commissioned at LSC

Identify the barium daughter by optical spectroscopy (M.Moe PRC44 (1991) 931)

Ba⁺ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980)

Single ions can be detected from a photon rate of $10^7/s$

Triplet state is quenched in dense gas

Can excite with blue, look only for red

Xenon's barium daughter

- In the decay, barium is strongly ionized by the nascent electrons emerging from the nucleus.
- Ba⁺⁺ is the expected outcome, after partial neutralization occurs by electron capture from neutral xenon (ionization potential 12.14 eV).
- Process stops at Ba⁺⁺ because the ionization potential of Ba⁺⁺ is 10.04 eV; it can't take another electron from a xenon atom.
- For the Ba⁺ spectroscopy to work, another electron must come from somewhere.
- Ba⁺ must be transported to low-pressure trap

Might there be another way?

- Perhaps. The technique of Single Molecule
 Fluorescent Imaging may be adaptable here.
- My idea is to exploit a remarkable chemical effect: the transformation of non-fluorescent precursors into a robust fluorescent state by capture and chelation of doubly ionized alkaline earth elements such as Ca⁺⁺

Might there be another way?

- Perhaps. The technique of Single Molecule
 Fluorescent Imaging may be adaptable here.
- My idea is to exploit a remarkable chemical effect: the transformation of non-fluorescent precursors into a robust fluorescent state by capture and chelation of doubly ionized alkaline earth elements such as Ca⁺⁺
- Maybe Ba⁺⁺ too! Ca and Ba are congeners

Conformal changes in Fluo-3

Once Ca⁺⁺ is captured by Fluo-3, its responsiveness to external excitation increases by a factor of 60 -80. Two-photon excitation with IR is also possible

This might work for Barium as well since barium and calcium are congeners. Fluorophores exist for for Pb⁺⁺, Hg⁺⁺, Cu...)

2014 Nobel Prize in Chemistry awarded to three physicists for developing SMFI

A TPC with a fluorescent cathode?

 One can imagine a cathode surface coated with untransformed fluorophores waiting to respond strongly after capture of one Ba⁺⁺.

A TPC with a fluorescent cathode?

- One can imagine a cathode surface coated with untransformed fluorophores waiting to respond strongly after capture of one Ba⁺⁺.
- One can imagine that the cathode surface is a dielectric belt that transports at a few mm/s the latent image to a line imager.

A TPC with a fluorescent cathode?

- One can imagine a cathode surface coated with untransformed fluorophores waiting to respond strongly after capture of one Ba⁺⁺.
- One can imagine that the cathode surface is a dielectric belt that transports at a few mm/s the latent image to a line imager.
- Ionization electrons liberated by the decay electrons provide a 3-D image of the event, and also the needed energy resolution, a la NEXT

HIGH PRESSURE XENON GAS ELECTROLUMINESCENT TPC
WITH SINGLE MOLECULE FLUORESCENT IMAGING OF BARIUM DAUGHTER

Summary & Perspective

- The need for a genuine advance is imperative.
- Is only a background-free experiment justifiable?
- Gas-phase Xenon offers flexibility and opportunities.
- **NEXT** is phased: $10 \rightarrow 100 \rightarrow 22 \pm 1000$?? kg
- NEXT is somewhat behind more conventional techniques, but may hold keys to ultimate success.

Thank you

Backup slides

Energy resolution at $Q_{\beta\beta} = 2457 \text{ keV}$

```
\delta E/E = 2.35 \cdot (F \cdot W/Q)^{1/2}

- F = Fano factor (HPXe): F = 0.15

- w = Average energy per ion pair: w ~ 25 eV

- Q = Energy deposited from <sup>136</sup>Xe --> <sup>136</sup>Ba:

N = Q/w ~100,000 primary electrons

\sigma_{N} = (F \cdot N)^{1/2} ~124 electrons rms!
```

 $\delta E/E = 0.28\%$ FWHM intrinsic HPXe

WINP 2015

ββ decay: Rare transition between same A nuclei

Energetically allowed for some even-even nuclei

- $(Z,A) \rightarrow (Z+2,A) + e_1^- + \underline{v}_1 + e_2^- + \underline{v}_2$
- $(Z,A) \rightarrow (Z+2,A) + e_1^- + e_2^-$
- $(Z,A) \rightarrow (Z+2,A) + e_1^- + e_2^- + \chi$

Figure 2.1: Simplified atomic mass scheme for nuclei with A=136. The parabolae connecting the odd-odd and even-even nuclei are shown. While ¹³⁶Xe is stable to ordinary beta decay, it can decay into ¹³⁶Ba by double-beta decay.

The neutrino effective mass m_v

• Decay rate $\approx m_v^2$

$$\left[T_{1/2}^{0\nu}(0^+ \to 0^+)\right]^{-1} = G^{0\nu}(E_0, Z) \left| M_{\text{GT}}^{0\nu} - \frac{g_V^2}{g_A^2} M_{\text{F}}^{0\nu} \right|^2 \langle m_\nu \rangle^2$$

• Effective mass m, depends on phases:

$$\langle m_{\nu} \rangle^{2} = \left| \sum_{i}^{N} U_{ei}^{2} m_{i} \right|^{2} = \left| \sum_{i}^{N} |U_{ei}|^{2} e^{\alpha_{i}} m_{i} \right|^{2}$$

Experimental Parameters

$$\langle m_{\beta\beta} \rangle \leq (2.50x10^{-5} meV) \sqrt{\frac{W}{fx \varepsilon G_{0v} |M_{0v}|^2}} \left[\frac{b\Delta E}{MT} \right]^{\frac{1}{4}}$$

- W molecular weight of source
- f isotopic abundance
- x number of bb isotopes per molecule
- ε detector efficiency
- G_{ov} decay phase space
- $|M_{0v}|$ matrix element
- b background in counts/keV-kg-y
- ΔE energy window in keV
- M mass of source in kg
- T counting time in years

- When comparing isotopes, don't forget W, favors low A.
 G_{0v} favors high A.
- QRPA has more A dependence than SM.

Isotope	$V(W/(G_{0v} M_{0v} ^2)) \times 10^7$	
Ge	2.4(QRPA) 4.7(SM)	
TeO ₂	1.9(QRPA) 3.1(SM)	
Xe	2.4(QRPA) 3.3(SM)	

The Experimental Challenges

Maximize Rate/Minimize Background

b = background/keV ΔE = Energy ROI M = active isotopic mass t_{live} = graduate students

Large Mass (~ 1 ton) Large Q value, fast $\beta\beta(0\nu)$ Good source radiopurity Demonstrated technology Ease of operation High isotopic abundance Easy enrichment Small volume, source = detector Good energy resolution Slow $\beta\beta(2\nu)$ rate Identify daughter in real time **Event reconstruction** Nuclear theory

Energy resolution

Signal and background:

- •Signal: mv ~200 meV and an exposure of 5 ton year.
- Background 1 count/keV/ton/year.

Splitting the window, or in the case of high-event rates, fitting the spectrum.

23 May 2013 WINP 2015 43

ββ Sensitivity

(mixing parameters from arXiv:1106.6028)

Even a null result will constrain the mass spectrum possibilities!

A $m_{\beta\beta}$ limit of ~20 meV would exclude Majorana neutrinos in an inverted hierarchy.

Background model dominated by limits rather than by actual values